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Abstract

Raychaudhuri’s equation is fundamental for the analysis of behaviour of geodesic congruences.
We describe the generalisation to congruences of solutions of arbitrary second-order ordinary differ-
ential equations on a manifold. This generalisation allows analysis of the behaviour of congruences
generated by specific sets of initial conditions, those invariant under specific Lie group actions as
well as singularity analysis. © 2000 Elsevier Science B.V. All rights reserved.

MSC:58F21 (34C05, 58F17)

Keywords:Raychaudhuri’s equation; Singularity analysis; Congruence collapse; Second-order differential
equation; Differential geometry

1. Introduction

Our purpose in this paper is to extend the utility of the Raychaudhuri equation from
the analysis of geodesic congruences to the study of congruences of solutions of arbi-
trary second-order ordinary differential equations on manifolds. The practical applications
of such a tool are widespread: the focusing of congruences, especially those occurring
in constrained dynamics; the analysis of caustics and the global study of singularities of
second-order ODEs.

We take as our starting point the study of the Raychaudhuri equation given by Crampin
and Prince [1]. In that paper, a tangent bundle approach produces an evolution equation
on TM which contains information about all possible geodesic congruences. Pulling this
equation back from any given geodesic section and taking the trace gives the Raychaudhuri
equation. Tangent bundle techniques have been the basis for the differential geometric study
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of second-order differential equations (see, for example, [2,4,5]) and we have been able to
sidestep the apparent obstructions of the absence of metric and linear connection to produce
an analogous evolution equation on the evolution sgace R x TM.

The structure of the paper is as follows: in Section 2, we review the geodesic Ray-
chaudhuri equation. In Section 3, we present the evolution space formulation of arbitrary,
nonautonomous second-order ODES, in particular the nonlinear connection associated with
such equations. In Section 4, we introduce the generalisatignof the covariant differ-
ential of the vector field tangent to a congruence of solution curves and in Section 5, we
show that congruence collapse is determined by the zeros of the reciprocal of the trace of
this (1,1)-tensor field. Our derivation is fully applicable in the geodesic case and provides
an alternative to the usual treatments. Section 6 contains the main result namely the gen-
eralisation of the Raychaudhuri equation being the evolution equation for the trace of
Section 7 lays the foundations for the analysis of congruences produced by sets of initial
conditions and gives a version of the Raychaudhuri equation which can be used without an
explicit formula forZ. Finally, in Section 8, we analyse planar motion in a magnetic field.

2. Background: the geodesic case

We give a brief account of Crampin and Prince [1]. The setting ig-@iimensional
smooth manifoldM equipped with a metrig and a symmetric connectiovi (in fact V
need not be the metric connection). We denote the spray of the connectionDwgfine a
type (1,1)-tensor field ; associated with a local vector fieklby comparing Lie transport
with parallel transport,

d -
AZ = a - T; 1 e} ;t*' (2.1)

Here¢; is the flow generated b¥, andzt, the parallel transport map alorgg There is a
simple relationship betweefi; and the covariant derivative. For afyangent tov

Az(§) =V Z.
If Z is geodesic then the propagation equationAgralongZ is
L;A7 =VzA; = —Ry — A2, (2.2)
whereR7 is the type (1,1)-tensor field obtained from the connection curvaiug
Rz(X) = R(X,Z)Z.

Taking the trace of Eq. (2.2) yields Raychaudhuri’s equation (taking the trace and Lie
differentiation commute)

Z(®) = —Ric(Z, Z) — tr(0?) — tr(c?) — 162, (2.3)

whered, w ando are respectively the divergence, shear and vorticit{ of hat is to say
Az decomposes into the sum of a multiple of the iderfiity a trace free symmetric paut
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and skew symmetric past. Symmetry and skew symmetry are defined with respect to the
metric so thaty satisfies

g@(X),Y) = g(a(Y), X)

ando satisfies the skew symmetric version.

The main result of Crampin and Prince [1] is to show that a global version of Eq. (2.2)
on M can be found if one lifts to TM. In this new setting the role of the tensor fieid
in Eq. (2.2) is played by a type (1,1)-tensor figldon TM, the vertical projection@ is a
natural geometric object that one has at hand on TM, ind2edists by virtue of the fact
TM together withV determines a direct sum decomposition of theddmensional tangent
spaces of TM into:-dimensional vertical and horizontal subspao@sis the projection
operator onto the vertical subspace.

Let Z be geodesic. The spray of the connectidis a global vector field on TM and is
an example of a second-order differential equation field. The global version of Eq. (2.2) is

QoLlrQ=—R, (2.4)

whereR is a type (1,1)-tensor field obtained by lifting the connection curvaiuimn M

to TM. Z defines a section; of the bundle TM— M, such that forany € U C M,
oz(p) = Z,. The sectiory is used to pull back so-called vertical tensor fields on TM to
M, in particular it is shown that

G%Q = Az. (2.5)

The significance of this result is that the deformation of the tangent spaddshyf the
action of the flow ofZ as measured by the definition in Eq. (2.1) is intrinsically available
on TM. We exploit this feature in our work in later sections.

When Eq. (2.4) is restricted to the image of the sectigrand the restricted equation
pulled back taV, Eq. (2.2) is recovered. Moreover, Eg. (2.2) contains information for every
geodesic congruence av, the choice of section determining the congruence. By using
the geometric structure of TM endowed with a symmetric connection Crampin and Prince
have demonstrated the geometric information of Eq. (2.2) is available in a global form on
T™.

Our interest, in this present work, is to generalise these ideas to apply in the case where
Z is arbitrary, and hencf is no longer geodesic but an arbitrary second-order differential
equation field. Our starting point will be a manifold equipped with a second-order
differential equation field™. We shall do away with the imposed symmetric connection and
take instead the nonlinear connection definedJ]. In the case wheré' is the geodesic
spray, the connection defined byagrees with the metric connection, so the geodesic case
outlined above is recoverable as a special case of our generalised framework. In this context,
we use Eq. (2.5) as our definition af;, which captures the geometric effect of the action
of the flow of Z on M. We derive a propagation equation féy, the trace of which will
provide a tool for the singularity analysis of congruences of solution curves, analogous to
Raychaudhuri’s equation.
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3. Evolution space

In Section 2, we worked on TM, which provided a natural setting for the geodesic case.
We found that in order to generalise the ideas of that section it was necessary to move to
the evolution spac& = R x TM. We give a brief development, following Crampin et al.
[2], of the geometric properties of this new setting.

Let M be a smoott-dimensional manifold, the configuration space of our system. It
will be useful to have the bundley : R x M — M. We regard evolution spacg as
a vector bundler : R x TM — R x M over the graph spadk x M of M. The fibre
n~1(t, x) over(r, x) € R x M is the vector space of vectors tangentMoat x. Given
any curvey : R — M such thaty (r) = x then(z, x, u), wherey (r) = u, is an element
of 7=1(t, x). We use(t, x?, u®) fora = 1, ... , n as adapted coordinates fbr Clearly a
curvey : R — M defines a curv® — E byt +— (1, ¥ (1), ¥ (1)), the 1-jet ofyr. Such
curves are distinguished by the contact 1-fofifiswhich have the coordinate expression

0% := dx® — u‘dr, (3.1
since a curve : R — E is the 1-jet of a curve i/ if and only if

¢*0* =0.
Furthermore, the condition

¢*dr =dr

ensures thap is parameterised by the time coordinate functiolt follows that any vector
field I on E whose integral curves are 1-jets of curveddmmust satisfy

(I',09) =0, (I df)=1

We call such a vector field a second-order differential equation field or SODE. In terms of
coordinates,

3 9 9
r=240 % 4 e @ 3.2
o T T g (3-2)

for some smooth local functiong® on E. Its integral curves haveparameter and satisfy
x4 =u @), w(t) = fAt, x @), u())).

They are the 1-jets of the solution curves of the second-order differential equations
= fe, x, x).

Let X € X(R x M), the module of vector fields dR x M. The prolongatiorX ® of X
is the unique vector field oB such that

XY =X and Lywh* e spv?).
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In coordinates, given

d 3 o
X=r5+§“axa, 7,§ e CP°R x M),
then
0 d 0
X(l)= e a_~ a ,
Tar T e T e
where

N =& —ut.

The fibres of the bundle : E — R x M endowE with a vertical sub-bundle structure.
A vector at a point oft is said to be vertical if it is tangent to the fibremof. E — R x M.
The vector fieldd/, = (3/0u®) form a local basis of vertical vector fields.

Combining the vertical and contact structure we define a type (1,1)-tensos faaldz

by
S=V,®0“ (3.3)
S has the following intrinsic properties, which in fact define it:
1. S vanishes on vertical vectors and SODE fields,
2. for any vector fieldZ on E, S(Z) is vertical,
3. 8(3/91) = —A, whereA = u?(3/0u?) (this is a tensorial condition).

In coordinates, given an arbitrary vector fié#don E suchthaW = A(9/9t)+u®(9/9x*)+
v4(d/9u?), then

S(W) = (u* —u1)V,.

Let I" be a SODE. A lot more geometry comes from looking at the deformatich of
under the action of". Given the properties of above it is easy to see

LrSI)=LrSUIN)—SLr =0
and
LrS(Va) = Lr(S(Va)) — S(LrVa) = Va.
It is shown in [2] that
LrS(H;) =—H,,
where then local vector fieldsH, are defined relative t&' (Eq. (3.2)) by

0 p 0 b 195¢
H, = —I'’—, where I'’ = —— .
T Yxa ¢ Ju a 2 ou?

ThusL S has eigenvalues -1, —1. The eigenspace corresponding to the eigenvalue 0
is spanned by, the eigenspace corresponding to the eigenvaliiés thern-dimensional

(3.4)
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vertical subspace spanned by the The n-dimensional subspace corresponding to the
eigenvalue-1 is called horizontal, and is spanned Hy.

The vector fields{H,, V,, I'} form a local vector field basis o, with dual basis
{64, v*, dr} where

Y= du® — fodr + I17eb.

The I’ form the components of the nonlinear connection defined byVe remark that
Sarlet et al. [5] show that the nonlinear connection arising from a SODE in this way is
torsion free.

We define the following type (1,1)-tensor fieldB:and Q, projection operators onto
the horizontal and vertical subspaces respectively,Mnithe projection operator onto the
1-dimensional subspace spannedbyf he direct sum decomposition of the tangent spaces
of E induced by the eigenspaces©f S isI = N + P + Q where/ is the identity type
(1,1)-tensor field. In terms of the dual bases above

P=H,®0° Q0=V,®y% N=TI®ad. (3.5)

The following equation gives the components of the Jacobi endomorghismQo L P,
a type (1,1)-tensor field oA:

[, H) = "Hy + &LV, (3.6)
A calculation shows
b b b e b b. af’
¢, =B, -I. I, —TI(,), whereB, :=— Pl (3.7)

Other useful results
[, V,)=—H,—T’Vy,  [Ha, Hp) = R%, V4,

whereR is the curvature of the nonlinear connectibfi defined byr™.
In the case, wheré™ is the geodesic spray of a symmetric linear connectigrthe
horizontal fields are
d b o 0

o c
a ~—
x4 acT Jua’

the I'%. are the components &f, andI" = u“ H,. Therefore, in this case is related to
the curvature by (in terms of components)

(@) = RE. u‘u?,  where [H,, Hp] = RL,uVy.

cab

We return to the case whereis an arbitrary SODE. Given any vector fietde X' (R x
M), we define its vertical liftY¥ to E by

XV = 85(xD).
In coordinates, ifY = 7(d/0dr) + £4(3/0x?), then

XY = (% — ut)V,.
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The vertical lift of X depends only on the the baRex M since the vertical part of @
contributes nothing t& v (sincef??(V;) = 0). In factX" depends only on the value &fat

the point of lifting, that is, the vertical lift works in a pointwise fashion thus we may extend
it to vectors tangent t® x M by

v =0V, = (Y —v'1)V,, wherev = (1,&) -

4. The sectionoz and Az

We will now assume the existence of local congruences of (graphs of) solution curves of
an arbitrary second-order differential equation (in the geodesic case, this can be established
because of the finite separation of conjugate points). The corresponding local tangent vector
fieldis Z € X(R x M): since the integral curves of are graphs,dZ) = 1. Hence we
write

d d .
Z=—4+2—, Z%localfunctionsoR x M.
ot x4

Z defines a local sectioti; of 7 : R x TM — R x M as follows:

Definition 4.1. Letp e U C R — M. Then

oz(p) == (p,0+Zp).

This section will be an important tool for us in what follows. The derivative mgp:
R x M — E is linear. In coordinates

oz(t,x) = (t,x*, Z%
from which the next lemma follows immediately.

Lemma 4.2.
3 9, 9z o 3 9, 9z b
o — ) == —, o — =+ ——.
2\or) "ot " Tor oue 2\ oxb ) ~ axb " 9xP oua

Definition 4.3. We use an overline to indicate the restriction to the image of the section,
Im(oz). For example, the restriction of the contact 1-forms is denoted

0 = 9a|az(R><M) =dx? — Z%r.

Note theZ? are local functions olR x M. The restriction to the section of thé have the
same coordinate formulae as the pullback by the section. We make no notational distinction
between the two.

Lemma 4.4.
(i) Let f* be as in Eq. (3.2), theri® = Z(Z4).
(i) I = 07+(2),i.e.T is tangent tdm(oy).
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Proof. (i)Lets — (r, ¢ (1)) be anintegral curve of. Restrictf* to points(z, ¢ (1), ¢(1)) €
Im(oz). By definition

d
fe= u U, (1), p(1) = —¢ (1) = 2 Zg = 2(2%).

(i) This follows from (i) and Lemma 4.2. O

Let F be alocal function o, thatisF = F(r, x%, u®). ThenF = F(t, x%, Z°(t, x?)).
RegardingF as a function on the base, the derivativesFoin the coordinate directions
are

9F 9Z* 3F oF 30Z% 0F

_( F) = or T Tor aua 8xb( )_ 5t oxt pue

(4.1)

Definition 4.5. Let B be a type (1,1)-tensor field af.. We sayB is vertical if Q o B = B,
that is, the image oB is purely vertical.

We can now define a pullback of vertical type (1,1) tensor&dno R x M.
Definition 4.6. Let B be a vertical tensor field of, ie. Q o B = B. We define the pullback
o, B of B from E toR x M in the following way. Given any vectdy tangent taR x M
at p, B(oz£) is vertical, and hence there is a unique veetos T,(R x M) such that

dr(n) = 0 andn™ = B(oz.£). Evidentlyn depends linearly od and we denote the linear
mapT,(R x M) — T,(R x M) which takes; ton by o7 B. Hence

(65B(£))" = B(oz+£) and d(o5B) =0. (4.2)

Now we turn Eq. (2.5) into a definition
Definition 4.7. We define the type (1,1)-tensor fiedd; onR x M associated witl by

Az = O'EQ (43)

Proposition 4.8. The co-ordinate expression fdr,.

9z 3
Az = 8b+1“b oa 007

Proof. Leté € T,(R x M), in coordinateg = t(3/dr) + £%(3/9x*). Now Az ()" =
0(02:8) = Y& + £(ZP) V) V,. Expanding this yields

Q(07:E) = (= [t (€) + T0"(€) + E(Z))Va

and restriction to the section (using Lemma 4.4) gives
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Q(074E) = (—Z(Z)di (§) + T16°(§) + £(Z°)) Vs

3za 3ze 3z
- (—er— +eb— 4 Fb”Gb($)> V, = <

a

6% &) + F‘,;'éb@)) Va

dxb axb axb
_ éb 9Z¢ ~a
=0"®) (5575 + 13 ) Va-
Therefore (sincedAz(§)) = 0),
_ 9Z¢ - 0
—_ (pb a
Az (&) = (07(5)) (ax,, +Fb> 9xd
and hence
A= (2% i) L ga
2=\ oxb b ) oxa
as required. O

Note that ttAz) = (9Z/dx?) + I*.

Definition 4.9. We define a covariant derivative-like operatomwhich acts only along
to be the linear operator with the properties

() V(f) :=Z(f), forall f € C*R x M),

(i) V(X):=[Z,X]+ Az(X),forall X € X(R x M).

This is modelled on the conventional identfdz X — VxZ = [Z, X]. Note that this
produces an effectively torsion free connection.

Lemma 4.10. Properties ofV. LetY, X € X(R x M) and f € C®(R x M). Then

(i) V(X+Y)=VX+ VY,

(i) VZ =0,
(i) V(fX)=Z()X+ fVX,

(iv) GivenX = t(3/dt) + X“(3/3x"), thenVX = Z(1)(3/dt) + (Z(X*) + 7 Xb —

T(Z(Z%) + I} Z%))(3/0x%),
(V) V(3/3x%) = [P(@/9xP),
(Vi) V(3/0t) = —(Z(Z%) + ZPT#)(3/0x%).

Proof. (i) is immediate from the definition. (iiWZ = [Z,Z] — Az(Z) = O since
(Az(2))Y = Q(oz+Z) = Q") = 0. (iii) follows from the definition. (iv) is a straight
forward coordinate calculation. (v) follows from (iv) witki = (3/9x“). (vi) follows from
(iv) with X = (9/01). O

We extendV to act on 1-forms by duality. Leb € X*(R x M) andX € X(R x M).
Then

V(w(X)) = (Vo) (X) + o(VX). (4.4)
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Lemma4.11.
0] vdr =0,
(ii) Vo4 = —fb‘léb.

Proof. Use the dual basé&, (3/9x%)} and{dr, 64}. Using Eq. (4.4) one findgds (Z) = 0
andVdz (3/dx®) = 0 which gives (i). WhileVo*(Z) = 0 andV§“(d/dx’) = —I7, gives
(ii). O

5. Singularity analysis

In order to study the collapse of the congruence corresponding to the vectadr fietd
define a volume form2 which measures the transverse volume of the congruence. The
natural transverse volume form is the characterising form for the distributicf} sp

Q=0 A AO".

In the presence of a metric connection, Sayrom Section 2, the parallel transpagt
is isometric (length and angle preserving) and one may distinguish [7] a preferred volume
form T, which in a right handed coordinate system is

Y = |det(gap)Y2dxt A - A dx”,

gab being the components of the metric. has the property tha? T = 0. We use this
metric connection picture to motivate a normalisation condition for the transverse volume
form £2, thus, we require our “normalised volum&”to be invariant along the congruence
under “parallel transport”, that i&/ 2 = 0.

Proposition 5.1. Let u be any smooth function satisfying

a

3
Z(w) +p =0 (5.1)

dx4

along the congruence definiry Then

V(us2) = 0.

Proof.

V(u2) =Z(wW)2 +puVR2 = Z(u)2 + (VO A - NG + -+ 0L A AVEY)

VA
:(Z(/,L)-F,u >:2=0. U
ax4

Let 2 := u£2. Note that since
ZLz2 = L7(Z]2)+ 2(LzZ) =0,

L7$2 is characterising for §iZ}. We now derive the evolution af under Lie transport
along the congruence.
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Proposition 5.2.
L72 =08,
whered = tr(Az) = (32%/3x%) + I4.
Proof. The same idea as Proposition 5.1. O

Next, we show that congruence collapse is determined by the zeto$.0h order to have
a standardised numerical transverse volume along the congruence we iesdragged,
linearly independent transverse vector fieMs . .. , X,, along an integral curve of Z,
that isLzX; = 0 (the local existence of these fields is guaranteed). Then the numerical
transverse volume at(s) is

Q20s) 1= 2(X1(5), ..., Xn(5))

and we have the simple corollary to Proposition 5.2.

Corollary 5.3.
L7(82(5)) = 0(5)82(s), (5.2)

whered (s) 1= 0(y (s)).
The differential equation (5.2) has formal solution

S(s) = Q(O)exp( / ' 9(s)ds> (5.3)
0

on an intervall on which@ is continuous. Note that if the integrﬁ 6(s)ds diverges to
—oo then the numerical volume (s) collapses. Suppode= [0, a) and(1/6) has no zeros
on but has a zero at. Then it is simple to show a sufficient condition for the divergence
of the integral is tha® < 0 and(1/0)" > 0 onI and the derivative of1/0) exists ata.
Raychaudhuri’s equation is used to determine the behaviour of the furictiertr(Az),

on which the singularity analysis of the congruence depends.

6. The evolution ofAz

In this section, we exhibit an evolution equation fo¢, which in turn gives an evolution
equation for ttAz). The next lemma allows us to simplify the proof of the theorem.

Lemma 6.1.
(i) —Bj = Z(dZ°/0x") + 9 Z¢ /0xP (927 /9x ) + 21,9,
(i) Z(Iy) = TT).

Proof.
(i) —Bf = (3f9/3x") = (3 f9/0xP) — (3Z¢/3x")(3f*/9uc), where we have used Eq.
(4.1). Using Lemma 4.4 we haveBy = (3/3x")(Z(Z%))+2(3Z¢/3x") I, expanding
the first term on the RHS gives the required result.
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(ii) One has
_ d - d - ary ary _ oy —
Z(FY = — (¢ 7z¢ ey = b —c_ b c_"b _ r(r9),
Ty) =5, T) + 25 Uhy) = =7 Tl e + I gue = FUR)
where, once again, we have used Eq. (4.1). d

We now come to the main theorem.

Theorem 6.2.

Lz7A7 = —A2 — &.

Proof. Let D§ := (3Z2%/3x?) + I'#. ThenAz = D{(3/0x%) ® 6* and clearlyA? =
DD5(3/3x") ® 6”. We now approach the proof head on.

EVA RYVAS
LAz + AZ = (zwg) - DgW + DY — + Df.D,§>

5b
¢ 9xb 90

dx¢

Expanding the RHS, cancelling terms and using Lemma 6.1(ii) gives

(4

ad VA
—(Z(Z* 2re
(axbu D2l

- - 0 -
S TT+ r;‘r,f) 52 ®0"

Expanding the first term and rearranging yeilds
9Z° VANE VA - - 9 -
(Z <W> +o5 <§ + 21“2) + () + Ffl‘g) pp ®0°.

One may now recogniseﬁz from Lemma 6.1(i), and so the expression becomes

T _
(=B, + T(I) +TTH— ®6" = —@
x4
as required. O

We conclude this section with a result which shows that Theorem 6.2 is the pullback of
a global evolution equation (cf. the goedesic case described in Section 2).

Proposition 6.3.
QoLrQ=-9o.
Proof. Recalll = N + P + Q, whereN is the projection onto g}, the eigenspace of
LS corresponding to eigenvalue 0. It is straightforward to checkAhay = 0. Hence,
QoLrQ=QoLr(I—N—P)=—-QoLrP=—0. O

It follows as an immediate corollary to Proposition 6.3thatd ; + A2 = —& (Theorem
6.2) is the pullback 0D o L0 = — .
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7. Computational issues

In order to analysed; and the generalised Raychaudhuri equation in concrete cases
where an explicit form for a local vector field is not known we derive an alternative
expression forAz in which the derivatives of the components 6fdo not appear. This
expression is particularly useful in dealing with SODEs possessing symmetry. In what
follows we will construct: commuting vector fields which commute with our SODEIn
practical examples (see Section 8) we would expect to use symmetries of the SODE with
these properties. In effect, the presence of such symmetries produces local congruences of
solution curves ofR x M along which particular sets of first integrals have constant values;
we do not, however, require expressions for these integrals in our alternative definition of
Az.

Let SO be the image of a section of: {0} x TM — {0} x M so thatitis am-dimensional
submanifold of 0} x TM with nowhere vertical tangent space and witlhowhere tangent
to $°. We make this requirement so that there is exactly one projected solution curve passing
through each point on the projection $f. Let{Xg} bern commuting tangent vector fields
to SO and define

Xa(1) i= (X0

forall + € I := [0, T] for which spX,(¢)} contains no vertical direction and for which
dim(sp{X,(¢)}) = n (T > 0 by continuity). Now K, (t), X;,(#)] =0, [X,(), '] =0 and
sp{X,(2)} is the tangent distribution to the-dimensional submanifold’ := é‘t*SO. Let

S 1= U;¢sS". Notice thatl” is tangent to thign + 1)-dimensional submanifold of and

that the restriction of to S is one-to-one and onto its image. As a result we define a vector
field onz (S) by

Za(p) = mxTp

for eachp € S and hence a local section 8f: E — R x M as in Definition 4.1 so that
oz(m(S)) = S, 07+(Z) = I' (using our previous notation) and

[Z, W*Xa]n(p) =0= [N*Xa» W*Xb]n(p)
for eachp € S, using the facts that{,, X;,] = 0 and
[7. T, ﬂ*Xa]n(p) = ([T, XG]P) =0.

We will use this section to obtain a simple expressiomfgrvhich contains no derivatives
of Z. Let

o 9 = EOF + E2X
Zy 5 ) — 0 0tb

and

oz 9 =E°T + E*X,,.
* axa a a
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Lemma 7.1.
C

- X _— - 0
Eg=1, EgXj=-2° EgF(Xp+f'=——

0 byc c azb c b
E9=0. E[Xj=s =0 =ET(XD).

Proof. These results follow from Lemma 4.2 and the observation fiat['] = 0 implies
(but is not equivalent to)

d d
b b b byd b

Xa=Xqg55 + T X5 5 = XaHy + (T X5 + LX)V O
Theorem 7.2.

Az = (I + E;T(X9))0° ® Py
and

0 :=tr(Az) = I + EST(X9).
Proof. The proof follows from Proposition 4.8 with the use of Lemma 7.1. O

In the next section, we demonstrate how the formulae of Theorem 7.2 can be used when
we have explicit symmetries satisfying the defining relations fotihe

8. Example

A charged particle moving in a plane under the influence of a constant vertical magnetic
field B satisfies

d
& =quxB. (8.1)
The corresponding SODE is
ad d d d
Ir'=—+u° BlP— — Bu'—.
at tu ax¢ + dul du?

It is a simple matter to show that
1p2
B 0
—( 4 _1p2
[cbl‘j]_(o %BZ> and w®) = 3B~
The equations of motion have four obvious symmetries, generated by the following
commuting fields orE:

ad ad 0 5 0 10 0
Y1 = FYe Yo = —, Y3:=—, Yo =—-u"—+u—
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all of which commute withI". In order to have fields tangent to constant time slices of
R x TMwe willuseXq := Y1 — I',andX,, ;= Y,,a = 2, 3, 4. Taking these fields in pairs
we could, in theory, construct six 2-parameter families of local vector figltiEngent to
local congruences of solution curves of the equations of motion (indeed in this case, the
construction can be realised because of the dimension of the symmetry group). In this way,
we could write down a generalised Raychaudhuri equation for each congruence. However,
Theorem 7.2 gives us a means of analysing the congruences without explicit integration to
obtain expressions fdf.

We illustrate this process with the pair, X». In this case using Theorem 7.2 yields

1
[X;] = (_Zz (l))

and
[Az] = <(—1)B %_§21>
2 z2
so that
0:=1tr(Az) = iﬂ
72

The generalised Raychaudhuri equation is (using Newton'’s trace formula: see, for exam-
ple, [3])

1 1 _ 1 _ B2
z <5> =1- 3 {2 _kidj (@)t =1- {2deidz) — (@)} =1+ 5.
i<j
It is evident that if9 is negative at a poing on this congruence then at some point on
the orbit ofgq, (1/6) has a zero, and it can be shown from Eg. (5.3) that the congruence
collapses. This occurs at points wheté = 0.

It is a simple matter to obtain an explicit representationZoeither by integrating Eq.
(8.1) directly, or using the reduction of order technique of Sherring and Prince [6] (In this
case, thefields, X1, ... , X4 commute and so the elements of the dual b&sfs,. . . , »°},
are all locally exact. The expression faris obtained by locally inverting the expressions
f* = constant,f® = constant fom! andu? (0* = df*, »® = df°).) By either technique
we find

7¥ 4+ 7% = c?
and
7Z1=B¥+ D

with C € Rt, D € R. We see thaZ? = 0 on the straight lines? = (—D + C)\B for a
given choice of the two parametafsand D. On these lines the congruence collapses. The
congruences in this case are generated by translation of circlest thection.
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