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Abstract

Raychaudhuri’s equation is fundamental for the analysis of behaviour of geodesic congruences.
We describe the generalisation to congruences of solutions of arbitrary second-order ordinary differ-
ential equations on a manifold. This generalisation allows analysis of the behaviour of congruences
generated by specific sets of initial conditions, those invariant under specific Lie group actions as
well as singularity analysis. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Our purpose in this paper is to extend the utility of the Raychaudhuri equation from
the analysis of geodesic congruences to the study of congruences of solutions of arbi-
trary second-order ordinary differential equations on manifolds. The practical applications
of such a tool are widespread: the focusing of congruences, especially those occurring
in constrained dynamics; the analysis of caustics and the global study of singularities of
second-order ODEs.

We take as our starting point the study of the Raychaudhuri equation given by Crampin
and Prince [1]. In that paper, a tangent bundle approach produces an evolution equation
on TM which contains information about all possible geodesic congruences. Pulling this
equation back from any given geodesic section and taking the trace gives the Raychaudhuri
equation. Tangent bundle techniques have been the basis for the differential geometric study
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of second-order differential equations (see, for example, [2,4,5]) and we have been able to
sidestep the apparent obstructions of the absence of metric and linear connection to produce
an analogous evolution equation on the evolution spaceE := R× TM.

The structure of the paper is as follows: in Section 2, we review the geodesic Ray-
chaudhuri equation. In Section 3, we present the evolution space formulation of arbitrary,
nonautonomous second-order ODEs, in particular the nonlinear connection associated with
such equations. In Section 4, we introduce the generalisation,AZ, of the covariant differ-
ential of the vector fieldZ tangent to a congruence of solution curves and in Section 5, we
show that congruence collapse is determined by the zeros of the reciprocal of the trace of
this (1,1)-tensor field. Our derivation is fully applicable in the geodesic case and provides
an alternative to the usual treatments. Section 6 contains the main result namely the gen-
eralisation of the Raychaudhuri equation being the evolution equation for the trace ofAZ.
Section 7 lays the foundations for the analysis of congruences produced by sets of initial
conditions and gives a version of the Raychaudhuri equation which can be used without an
explicit formula forZ. Finally, in Section 8, we analyse planar motion in a magnetic field.

2. Background: the geodesic case

We give a brief account of Crampin and Prince [1]. The setting is ann-dimensional
smooth manifoldM equipped with a metricg and a symmetric connection∇ (in fact ∇
need not be the metric connection). We denote the spray of the connection byΓ . Define a
type (1,1)-tensor fieldAZ associated with a local vector fieldZ by comparing Lie transport
with parallel transport,

AZ := d

dt

∣∣∣∣
t=0

τ−1
t ◦ ζt∗. (2.1)

Hereζt is the flow generated byZ, andτt the parallel transport map alongζt . There is a
simple relationship betweenAZ and the covariant derivative. For anyξ tangent toM

AZ(ξ) = ∇ξZ.
If Z is geodesic then the propagation equation forAZ alongZ is

LZAZ = ∇ZAZ = −RZ − A2
Z, (2.2)

whereRZ is the type (1,1)-tensor field obtained from the connection curvatureR by

RZ(X) = R(X,Z)Z.

Taking the trace of Eq. (2.2) yields Raychaudhuri’s equation (taking the trace and Lie
differentiation commute)

Z(θ) = −Ric(Z,Z)− tr(ω2)− tr(σ 2)− 1
n
θ2, (2.3)

whereθ, ω andσ are respectively the divergence, shear and vorticity ofZ. That is to say
AZ decomposes into the sum of a multiple of the identityθI , a trace free symmetric partω
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and skew symmetric partσ . Symmetry and skew symmetry are defined with respect to the
metric so thatω satisfies

g(ω(X), Y ) = g(ω(Y ),X)

andσ satisfies the skew symmetric version.
The main result of Crampin and Prince [1] is to show that a global version of Eq. (2.2)

onM can be found if one lifts to TM. In this new setting the role of the tensor fieldAZ

in Eq. (2.2) is played by a type (1,1)-tensor fieldQ on TM, the vertical projection.Q is a
natural geometric object that one has at hand on TM, indeedQ exists by virtue of the fact
TM together with∇ determines a direct sum decomposition of the 2n-dimensional tangent
spaces of TM inton-dimensional vertical and horizontal subspaces.Q is the projection
operator onto the vertical subspace.

LetZ be geodesic. The spray of the connectionΓ is a global vector field on TM and is
an example of a second-order differential equation field. The global version of Eq. (2.2) is

Q ◦ LΓ Q = −R̂, (2.4)

whereR̂ is a type (1,1)-tensor field obtained by lifting the connection curvatureR onM
to TM. Z defines a sectionσZ of the bundle TM→ M, such that for anyp ∈ U ⊆ M,
σZ(p) = Zp. The sectionσZ is used to pull back so-called vertical tensor fields on TM to
M, in particular it is shown that

σ ∗
ZQ = AZ. (2.5)

The significance of this result is that the deformation of the tangent spaces ofM by the
action of the flow ofZ as measured by the definition in Eq. (2.1) is intrinsically available
on TM. We exploit this feature in our work in later sections.

When Eq. (2.4) is restricted to the image of the sectionσZ and the restricted equation
pulled back toM, Eq. (2.2) is recovered. Moreover, Eq. (2.2) contains information for every
geodesic congruence onM, the choice of section determining the congruence. By using
the geometric structure of TM endowed with a symmetric connection Crampin and Prince
have demonstrated the geometric information of Eq. (2.2) is available in a global form on
TM.

Our interest, in this present work, is to generalise these ideas to apply in the case where
Z is arbitrary, and henceΓ is no longer geodesic but an arbitrary second-order differential
equation field. Our starting point will be a manifoldM equipped with a second-order
differential equation fieldΓ . We shall do away with the imposed symmetric connection and
take instead the nonlinear connection defined byΓ [2]. In the case whereΓ is the geodesic
spray, the connection defined byΓ agrees with the metric connection, so the geodesic case
outlined above is recoverable as a special case of our generalised framework. In this context,
we use Eq. (2.5) as our definition ofAZ, which captures the geometric effect of the action
of the flow ofZ onM. We derive a propagation equation forAZ, the trace of which will
provide a tool for the singularity analysis of congruences of solution curves, analogous to
Raychaudhuri’s equation.
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3. Evolution space

In Section 2, we worked on TM, which provided a natural setting for the geodesic case.
We found that in order to generalise the ideas of that section it was necessary to move to
the evolution spaceE = R× TM. We give a brief development, following Crampin et al.
[2], of the geometric properties of this new setting.

Let M be a smoothn-dimensional manifold, the configuration space of our system. It
will be useful to have the bundleπ0 : R × M → M. We regard evolution spaceE as
a vector bundleπ : R × TM → R × M over the graph spaceR × M of M. The fibre
π−1(t, x) over (t, x) ∈ R × M is the vector space of vectors tangent toM at x. Given
any curveψ : R → M such thatψ(t) = x then(t, x, u), whereψ̇(t) = u, is an element
of π−1(t, x). We use(t, xa, ua) for a = 1, . . . , n as adapted coordinates forE. Clearly a
curveψ : R → M defines a curveR → E by t 7→ (t, ψ(t), ψ̇(t)), the 1-jet ofψ . Such
curves are distinguished by the contact 1-formsθa , which have the coordinate expression

θa := dxa − uadt, (3.1)

since a curveφ : R→ E is the 1-jet of a curve inM if and only if

φ∗θa = 0.

Furthermore, the condition

φ∗dt = dt

ensures thatφ is parameterised by the time coordinate functiont . It follows that any vector
field Γ onE whose integral curves are 1-jets of curves inM must satisfy

〈Γ, θa〉 = 0, 〈Γ,dt〉 = 1.

We call such a vector field a second-order differential equation field or SODE. In terms of
coordinates,

Γ = ∂

∂t
+ ua

∂

∂xa
+ f a

∂

∂ua
(3.2)

for some smooth local functionsf a onE. Its integral curves havet parameter and satisfy

ẋa(t) = ua(t), u̇a(t) = f a((t, x(t), u(t))).

They are the 1-jets of the solution curves of the second-order differential equations

ẍa = f a(t, x, ẋ).

LetX ∈ X (R×M), the module of vector fields onR×M. The prolongationX(1) of X
is the unique vector field onE such that

π∗X(1) = X and LX(1) θa ∈ sp{θa}.
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In coordinates, given

X = τ
∂

∂t
+ ξa

∂

∂xa
, τ, ξ ∈ C∞(R×M),

then

X(1) = τ
∂

∂t
+ ξa

∂

∂xa
+ ηa

∂

∂ua
,

where

ηa := ξ̇ a − uaτ̇ .

The fibres of the bundleπ : E → R×M endowE with a vertical sub-bundle structure.
A vector at a point ofE is said to be vertical if it is tangent to the fibre ofπ : E → R×M.
The vector fieldsVa = (∂/∂ua) form a local basis of vertical vector fields.

Combining the vertical and contact structure we define a type (1,1)-tensor fieldS onE
by

S = Va ⊗ θa. (3.3)

S has the following intrinsic properties, which in fact define it:
1. S vanishes on vertical vectors and SODE fields,
2. for any vector fieldZ onE, S(Z) is vertical,
3. S(∂/∂t) = −4, where4 = ua(∂/∂ua) (this is a tensorial condition).

In coordinates, given an arbitrary vector fieldW onE such thatW = λ(∂/∂t)+µa(∂/∂xa)+
νa(∂/∂ua), then

S(W) = (µa − uaλ)Va.

Let Γ be a SODE. A lot more geometry comes from looking at the deformation ofS

under the action ofΓ . Given the properties ofS above it is easy to see

LΓ S(Γ ) = LΓ (S(Γ ))− S(LΓ Γ ) = 0

and

LΓ S(Va) = LΓ (S(Va))− S(LΓ Va) = Va.

It is shown in [2] that

LΓ S(Ha) = −Ha,
where then local vector fieldsHa are defined relative toΓ (Eq. (3.2)) by

Ha := ∂

∂xa
− Γ ba

∂

∂ua
, where Γ ba := −1

2

∂f a

∂ub
. (3.4)

ThusLΓ S has eigenvalues 0,+1,−1. The eigenspace corresponding to the eigenvalue 0
is spanned byΓ , the eigenspace corresponding to the eigenvalue+1 is then-dimensional
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vertical subspace spanned by theVa . Then-dimensional subspace corresponding to the
eigenvalue−1 is called horizontal, and is spanned byHa .

The vector fields{Ha, Va, Γ } form a local vector field basis onE, with dual basis
{θa, ψa,dt} where

ψa := dua − f adt + Γ ab θ
b.

TheΓ ba form the components of the nonlinear connection defined byΓ . We remark that
Sarlet et al. [5] show that the nonlinear connection arising from a SODE in this way is
torsion free.

We define the following type (1,1)-tensor fields:P andQ, projection operators onto
the horizontal and vertical subspaces respectively, andN , the projection operator onto the
1-dimensional subspace spanned byΓ . The direct sum decomposition of the tangent spaces
of E induced by the eigenspaces ofLΓ S is I = N + P +Q whereI is the identity type
(1,1)-tensor field. In terms of the dual bases above

P = Ha ⊗ θa, Q = Va ⊗ ψa, N = Γ ⊗ dt. (3.5)

The following equation gives the components of the Jacobi endomorphismΦ := Q◦LΓ P ,
a type (1,1)-tensor field onE:

[Γ,Ha ] = Γ ba Hb +ΦbaVb. (3.6)

A calculation shows

Φba = Bba − Γ bc Γ
c
a − Γ (Γ ba ), where Bba := −∂f

b

∂xa
. (3.7)

Other useful results

[Γ, Va ] = −Ha − Γ ba Vb, [Ha,Hb] = RdabVd,

whereR is the curvature of the nonlinear connectionΓ ba defined byΓ .
In the case, whereΓ is the geodesic spray of a symmetric linear connection∇, the

horizontal fields are

Ha := ∂

∂xa
− Γ bacu

c ∂

∂ua
,

theΓ bac are the components of∇, andΓ = uaHa. Therefore, in this case,Φ is related to
the curvature by (in terms of components)

(Φu)
a
b = Rabcdu

cud, where [Ha,Hb] = Rdcabu
cVd.

We return to the case whereΓ is an arbitrary SODE. Given any vector fieldX ∈ X (R×
M), we define its vertical liftX∨ toE by

X∨ = S(X(1)).

In coordinates, ifX = τ(∂/∂t)+ ξa(∂/∂xa), then

X∨ = (ξa − uaτ)Va.
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The vertical lift ofX depends only on the the baseR ×M since the vertical part ofX(1)

contributes nothing toX∨ (sinceθa(Vb) = 0). In factX∨ depends only on the value ofX at
the point of lifting, that is, the vertical lift works in a pointwise fashion thus we may extend
it to vectors tangent toR×M by

v∨ = θa(v)Va = (ξa − vaτ)Va, where v = (τ, ξ)(t,x).

4. The sectionσZσZσZ andAZAZAZ

We will now assume the existence of local congruences of (graphs of) solution curves of
an arbitrary second-order differential equation (in the geodesic case, this can be established
because of the finite separation of conjugate points). The corresponding local tangent vector
field isZ ∈ X (R ×M): since the integral curves ofZ are graphs, dt (Z) = 1. Hence we
write

Z = ∂

∂t
+ Za

∂

∂xa
, Za local functions onR×M.

Z defines a local sectionσZ of π : R× TM → R×M as follows:

Definition 4.1. Let p ∈ U ⊆ R→ M. Then

σZ(p) := (p, π0∗Zp).

This section will be an important tool for us in what follows. The derivative mapσZ∗ :
R×M → E is linear. In coordinates

σZ(t, x
a) = (t, xa, Za)

from which the next lemma follows immediately.

Lemma 4.2.

σZ∗
(
∂

∂t

)
= ∂

∂t
+ ∂Za

∂t

∂

∂ua
, σZ∗

(
∂

∂xb

)
= ∂

∂xb
+ ∂Za

∂xb

∂

∂ua
.

Definition 4.3. We use an overline to indicate the restriction to the image of the section,
Im(σZ). For example, the restriction of the contact 1-forms is denoted

θ̄ a := θa|σZ(R×M) = dxa − Zadt.

Note theZa are local functions onR×M. The restriction to the section of theθa have the
same coordinate formulae as the pullback by the section. We make no notational distinction
between the two.

Lemma 4.4.
(i) Letf a be as in Eq. (3.2), then̄f a = Z(Za).
(ii) Γ̄ = σZ∗(Z), i.e. Γ̄ is tangent toIm(σZ).
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Proof. (i) Let t 7→ (t, φ(t)) be an integral curve ofZ. Restrictf a to points(t, φ(t), φ̇(t)) ∈
Im(σZ). By definition

f̄ a = d

dt
ua(t, φ(t), φ̇(t)) = d

dt
φ̇a(t) = d

dt
Zaφ(t) = Z(Za).

(ii) This follows from (i) and Lemma 4.2. �

LetF be a local function onE, that isF = F(t, xa, ua). ThenF̄ = F(t, xa, Za(t, xb)).
RegardingF̄ as a function on the base, the derivatives ofF̄ in the coordinate directions
are

∂

∂t
(F̄ ) = ∂F

∂t
+ ∂Za

∂t

∂F

∂ua
,

∂

∂xb
(F̄ ) = ∂F

∂xb
+ ∂Za

∂xb

∂F

∂ua
. (4.1)

Definition 4.5. LetB be a type (1,1)-tensor field onE. We sayB is vertical ifQ ◦B = B,
that is, the image ofB is purely vertical.

We can now define a pullback of vertical type (1,1) tensors onE toR×M.

Definition 4.6. LetB be a vertical tensor field onE, ie.Q◦B = B. We define the pullback
σ ∗
ZB of B from E to R ×M in the following way. Given any vectorξ tangent toR ×M

at p,B(σZ∗ξ) is vertical, and hence there is a unique vectorη ∈ Tp(R × M) such that
dt (η) = 0 andη∨ = B(σZ∗ξ). Evidentlyη depends linearly onξ and we denote the linear
mapTp(R ×M) → Tp(R ×M) which takesξ to η by σ ∗

ZB. Hence

(σ ∗
ZB(ξ))

∨ = B(σZ∗ξ) and dt (σ ∗
ZB) = 0. (4.2)

Now we turn Eq. (2.5) into a definition

Definition 4.7. We define the type (1,1)-tensor fieldAZ onR×M associated withZ by

AZ := σ ∗
ZQ. (4.3)

Proposition 4.8. The co-ordinate expression forAZ.

AZ =
(
∂Za

∂xb
+ Γ̄ ab

)
∂

∂xa
⊗ θ̄ b.

Proof. Let ξ ∈ Tp(R × M), in coordinatesξ = τ(∂/∂t) + ξa(∂/∂xa). Now AZ(ξ)∨ =
Q(σZ∗ξ) = ψa(ξ + ξ(Zb)Vb)Va . Expanding this yields

Q(σZ∗ξ) = (−f adt (ξ)+ Γ ab θ
b(ξ)+ ξ(Za))Va

and restriction to the section (using Lemma 4.4) gives
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Q(σZ∗ξ)= (−Z(Za)dt (ξ)+ Γ̄ ab θ̄
b(ξ)+ ξ(Za))Va

=
(

−τZb ∂Z
a

∂xb
+ ξb

∂Za

∂xb
+ Γ̄ ab θ̄

b(ξ)

)
Va =

(
∂Za

∂Xb
θ̄b(ξ)+ Γ̄ ab θ̄

b(ξ)

)
Va

= θ̄ b(ξ)

(
∂Za

∂Xb
+ Γ̄ ab

)
Va.

Therefore (since dt (AZ(ξ)) = 0),

AZ(ξ) = (θ̄b(ξ))

(
∂Za

∂xb
+ Γ̄ ab

)
∂

∂xa

and hence

AZ =
(
∂Za

∂xb
+ Γ̄ ab

)
∂

∂xa
⊗ θ̄ b

as required. �

Note that tr(AZ) = (∂Za/∂xa)+ Γ̄ aa .

Definition 4.9. We define a covariant derivative-like operator∇̄ which acts only alongZ
to be the linear operator with the properties

(i) ∇̄(f ) := Z(f ), for all f ∈ C∞(R×M),
(ii) ∇̄(X) := [Z,X] + AZ(X), for allX ∈ X (R×M).

This is modelled on the conventional identity∇ZX − ∇XZ = [Z,X]. Note that this
produces an effectively torsion free connection.

Lemma 4.10. Properties of∇̄. LetY,X ∈ X (R×M) andf ∈ C∞(R×M). Then
(i) ∇̄(X + Y ) = ∇̄X + ∇̄Y ,

(ii) ∇̄Z = 0,
(iii) ∇̄(fX) = Z(f )X + f ∇̄X,
(iv) GivenX = τ(∂/∂t) + Xa(∂/∂xa), then∇̄X = Z(τ)(∂/∂t) + (Z(Xa) + Γ̄ ab X

b −
τ(Z(Za)+ Γ̄ ab Z

b))(∂/∂xa),
(v) ∇̄(∂/∂xa) = Γ̄ ba (∂/∂x

b),
(vi) ∇̄(∂/∂t) = −(Z(Za)+ ZbΓ̄ ab )(∂/∂x

a).

Proof. (i) is immediate from the definition. (ii)∇̄Z = [Z,Z] − AZ(Z) = 0 since
(AZ(Z))

∨ = Q(σZ∗Z) = Q(Γ ) = 0. (iii) follows from the definition. (iv) is a straight
forward coordinate calculation. (v) follows from (iv) withX = (∂/∂xa). (vi) follows from
(iv) with X = (∂/∂t). �

We extend∇̄ to act on 1-forms by duality. Letω ∈ X ∗(R ×M) andX ∈ X (R ×M).
Then

∇̄(ω(X)) = (∇̄ω)(X)+ ω(∇̄X). (4.4)
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Lemma 4.11.
(i) ∇̄dt = 0,
(ii) ∇̄ θ̄ a = −Γ̄ ab θ̄b.

Proof. Use the dual bases{Z, (∂/∂xa)} and{dt, θ̄ a}. Using Eq. (4.4) one finds̄∇dt (Z) = 0
and∇̄dt (∂/∂xa) = 0 which gives (i). While∇̄ θ̄ a(Z) = 0 and∇̄ θ̄ a(∂/∂xb) = −Γ̄ ab , gives
(ii). �

5. Singularity analysis

In order to study the collapse of the congruence corresponding to the vector fieldZ we
define a volume formΩ̃ which measures the transverse volume of the congruence. The
natural transverse volume form is the characterising form for the distribution sp{Z}

Ω := θ̄1 ∧ · · · ∧ θ̄ n.
In the presence of a metric connection, say∇ from Section 2, the parallel transportτt

is isometric (length and angle preserving) and one may distinguish [7] a preferred volume
formΥ , which in a right handed coordinate system is

ϒ = |det(gab)|1/2dx1 ∧ · · · ∧ dxn,

gab being the components of the metric.Υ has the property that∇Υ = 0. We use this
metric connection picture to motivate a normalisation condition for the transverse volume
formΩ, thus, we require our “normalised volume”Ω̃ to be invariant along the congruence
under “parallel transport”, that is,̄∇Ω̃ = 0.

Proposition 5.1. Letµ be any smooth function satisfying

Z(µ)+ µ
∂Za

∂xa
= 0 (5.1)

along the congruence definingZ. Then

∇̄(µΩ) = 0.

Proof.

∇̄(µΩ)=Z(µ)Ω + µ∇̄Ω = Z(µ)Ω + µ(∇̄ θ̄1 ∧ · · · ∧ θ̄ n + · · · + θ̄1 ∧ · · · ∧ ∇̄ θ̄ n)
=
(
Z(µ)+ µ

∂Za

∂xa

)
Ω = 0. �

Let Ω̃ := µΩ. Note that since

ZcLZΩ̃ = LZ(ZcΩ̃)+ Ω̃(LZZ) = 0,

LZΩ̃ is characterising for sp{Z}. We now derive the evolution of̃Ω under Lie transport
along the congruence.
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Proposition 5.2.

LZΩ̃ = θΩ̃,

whereθ := tr(AZ) = (∂Za/∂xa)+ Γ̄ aa .

Proof. The same idea as Proposition 5.1. �

Next, we show that congruence collapse is determined by the zeros ofθ−1. In order to have
a standardised numerical transverse volume along the congruence we usen Lie-dragged,
linearly independent transverse vector fieldsX1, . . . , Xn along an integral curveγ of Z,
that isLZXi = 0 (the local existence of these fields is guaranteed). Then the numerical
transverse volume atγ (s) is

Ω̃(s) := Ω̃(X1(s), . . . , Xn(s))

and we have the simple corollary to Proposition 5.2.

Corollary 5.3.

LZ(Ω̃(s)) = θ(s)Ω̃(s), (5.2)

whereθ(s) := θ(γ (s)).
The differential equation (5.2) has formal solution

Ω̃(s) = Ω̃(0)exp

(∫ s

0
θ(s)ds

)
(5.3)

on an intervalI on whichθ is continuous. Note that if the integral
∫ s

0 θ(s)ds diverges to
−∞ then the numerical volumẽΩ(s) collapses. SupposeI = [0, a) and(1/θ) has no zeros
on I but has a zero ata. Then it is simple to show a sufficient condition for the divergence
of the integral is thatθ < 0 and(1/θ)′ > 0 on I and the derivative of(1/θ) exists ata.
Raychaudhuri’s equation is used to determine the behaviour of the functionθ := tr(AZ),
on which the singularity analysis of the congruence depends.

6. The evolution ofAZAZAZ

In this section, we exhibit an evolution equation forAZ, which in turn gives an evolution
equation for tr(AZ). The next lemma allows us to simplify the proof of the theorem.

Lemma 6.1.
(i) −B̄ab = Z(∂Za/∂xb)+ ∂Zc/∂xb((∂Za/∂xc)+ 2Γ̄ ac ),
(ii) Z(Γ̄ ab ) = Γ (Γ ab ).

Proof.
(i) −B̄ab = (∂f a/∂xb) = (∂f̄ a/∂xb) − (∂Zc/∂xb)(∂f a/∂uc), where we have used Eq.
(4.1). Using Lemma 4.4 we have−B̄ab = (∂/∂xb)(Z(Za))+2(∂Zc/∂xb)Γ̄ ac , expanding
the first term on the RHS gives the required result.
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(ii) One has

Z(Γ̄ ab ) = ∂

∂t
(Γ̄ ab )+ Zc

∂

∂xc
(Γ̄ ab ) = ∂Γ ab

∂t
+ ūc

∂Γ ab

∂xc
+ f̄ c

∂Γ ab

∂uc
= Γ (Γ ab ),

where, once again, we have used Eq. (4.1). �
We now come to the main theorem.

Theorem 6.2.

LZAZ = −A2
Z − Φ̄.

Proof. Let Dab := (∂Za/∂xb) + Γ̄ ab . ThenAZ = Dab(∂/∂x
a) ⊗ θ̄ b and clearlyA2

Z =
DacD

c
b(∂/∂x

a)⊗ θ̄ b. We now approach the proof head on.

LZAZ + A2
Z =

(
Z(Dab )−Dcb

∂Za

∂xc
+Dac

∂Zc

∂xb
+DacD

c
b

)
∂

∂xa
⊗ θ̄ b.

Expanding the RHS, cancelling terms and using Lemma 6.1(ii) gives(
∂

∂xb
(Z(Za))+ 2Γ̄ ac

∂Zc

∂xb
+ Γ (Γ ab )+ Γ̄ ac Γ̄

c
b

)
∂

∂xa
⊗ θ̄ b.

Expanding the first term and rearranging yeilds(
Z

(
∂Za

∂xb

)
+ ∂Zc

∂xb

(
∂Za

∂xc
+ 20̄ac

)
+ Γ (Γ ab )+ 0̄ac 0̄

c
b

)
∂

∂xa
⊗ θ̄ b.

One may now recognise−Bab from Lemma 6.1(i), and so the expression becomes

(−Bab + Γ (Γ ab )+ 0̄ac 0̄
c
b)

∂

∂xa
⊗ θ̄ b = −Φ

as required. �

We conclude this section with a result which shows that Theorem 6.2 is the pullback of
a global evolution equation (cf. the goedesic case described in Section 2).

Proposition 6.3.

Q ◦ LΓ Q = −Φ.

Proof. RecallI = N + P +Q, whereN is the projection onto sp{Γ }, the eigenspace of
LΓ S corresponding to eigenvalue 0. It is straightforward to check thatLΓ N = 0. Hence,

Q ◦ LΓ Q = Q ◦ LΓ (I −N − P) = −Q ◦ LΓ P = −Φ. �

It follows as an immediate corollary to Proposition 6.3 thatLZAZ+A2
Z = −Φ̄ (Theorem

6.2) is the pullback ofQ ◦ LΓ Q = −Φ.
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7. Computational issues

In order to analyseAZ and the generalised Raychaudhuri equation in concrete cases
where an explicit form for a local vector fieldZ is not known we derive an alternative
expression forAZ in which the derivatives of the components ofZ do not appear. This
expression is particularly useful in dealing with SODEs possessing symmetry. In what
follows we will constructn commuting vector fields which commute with our SODEΓ . In
practical examples (see Section 8) we would expect to use symmetries of the SODE with
these properties. In effect, the presence of such symmetries produces local congruences of
solution curves onR×M along which particular sets of first integrals have constant values;
we do not, however, require expressions for these integrals in our alternative definition of
AZ.

LetS0 be the image of a section ofπ : {0}×TM → {0}×M so that it is ann-dimensional
submanifold of{0}×TM with nowhere vertical tangent space and withΓ nowhere tangent
toS0. We make this requirement so that there is exactly one projected solution curve passing
through each point on the projection ofS0. Let {X0

a} ben commuting tangent vector fields
to S0 and define

Xa(t) := ζt∗(X0
a)

for all t ∈ I := [0, T ] for which sp{Xa(t)} contains no vertical direction and for which
dim(sp{Xa(t)}) = n (T > 0 by continuity). Now [Xa(t),Xb(t)] = 0, [Xa(t), Γ ] = 0 and
sp{Xa(t)} is the tangent distribution to then-dimensional submanifoldSt := ζ ∗

t S
0. Let

S := ∪t∈I St . Notice thatΓ is tangent to this(n + 1)-dimensional submanifold ofE and
that the restriction ofπ to S is one-to-one and onto its image. As a result we define a vector
field onπ(S) by

Zπ(p) := π∗Γp

for eachp ∈ S and hence a local section ofπ : E → R ×M as in Definition 4.1 so that
σZ(π(S)) = S, σZ∗(Z) = Γ̄ (using our previous notation) and

[Z,π∗Xa ]π(p) = 0 = [π∗Xa, π∗Xb]π(p)

for eachp ∈ S, using the facts that [Xa,Xb] = 0 and

[π∗Γ, π∗Xa ]π(p) = π∗([Γ,Xa ]p) = 0.

We will use this section to obtain a simple expression forAZ which contains no derivatives
of Z. Let

σZ∗

(
∂

∂t

)
= E0

0Γ̄ + Eb0X̄b

and

σZ∗

(
∂

∂xa

)
= E0

a Γ̄ + EbaX̄b.
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Lemma 7.1.

E0
0 = 1, Eb0X̄

c
b = −Zc, Eb0Γ (X

c
b)+ f̄ c = ∂Zc

∂t
,

E0
a = 0, EbaX̄

c
b = δca,

∂Zb

∂xa
= EcaΓ (X

b
c ).

Proof. These results follow from Lemma 4.2 and the observation that [Xa, Γ ] = 0 implies
(but is not equivalent to)

Xa = Xba
∂

∂xb
+ Γ (Xba)

∂

∂ub
= XbaHb + (Γ bd X

d
a + Γ (Xba))Vb. �

Theorem 7.2.

AZ = (Γ̄ ab + EcbΓ (X
a
c ))θ̄

c ⊗ ∂

∂xa

and

θ := tr(AZ) = Γ̄ aa + EcaΓ (X
a
c ).

Proof. The proof follows from Proposition 4.8 with the use of Lemma 7.1. �

In the next section, we demonstrate how the formulae of Theorem 7.2 can be used when
we have explicit symmetries satisfying the defining relations for theXa .

8. Example

A charged particle moving in a plane under the influence of a constant vertical magnetic
fieldB satisfies

dv

dt
= qv × B. (8.1)

The corresponding SODE is

Γ = ∂

∂t
+ ua

∂

∂xa
+ Bu2 ∂

∂u1
− Bu1 ∂

∂u2
.

It is a simple matter to show that

[Φab ] =
( 1

4B
2 0

0 1
4B

2

)
and tr(Φ) = 1

2B
2.

The equations of motion have four obvious symmetries, generated by the following
commuting fields onE:

Y1 := ∂

∂t
, Y2 := ∂

∂x
, Y3 := ∂

∂y
, Y4 := −u2 ∂

∂x1
+ u1 ∂

∂x2
+ Bua

∂

∂ua
,
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all of which commute withΓ . In order to have fields tangent to constant time slices of
R× TM we will useX1 := Y1 −Γ , andXα := Yα, α = 2,3,4. Taking these fields in pairs
we could, in theory, construct six 2-parameter families of local vector fieldsZ tangent to
local congruences of solution curves of the equations of motion (indeed in this case, the
construction can be realised because of the dimension of the symmetry group). In this way,
we could write down a generalised Raychaudhuri equation for each congruence. However,
Theorem 7.2 gives us a means of analysing the congruences without explicit integration to
obtain expressions forZ.

We illustrate this process with the pairX1, X2. In this case using Theorem 7.2 yields

[Xcb] =
(−u1 1

−u2 0

)

and

[AZ] =
(

0 1
2B

1
2B

−BZ1

Z2

)

so that

θ := tr(AZ) = −BZ1

Z2
.

The generalised Raychaudhuri equation is (using Newton’s trace formula: see, for exam-
ple, [3])

Z

(
1

θ

)
= 1 − 1

θ2


2
∑
i<j

λiλj − tr(Φ̄)


 = 1 − 1

θ2
{2det(AZ)− tr(Φ̄)} = 1 + B2

θ2
.

It is evident that ifθ is negative at a pointq on this congruence then at some point on
the orbit ofq, (1/θ) has a zero, and it can be shown from Eq. (5.3) that the congruence
collapses. This occurs at points whereZ2 = 0.

It is a simple matter to obtain an explicit representation forZ, either by integrating Eq.
(8.1) directly, or using the reduction of order technique of Sherring and Prince [6] (In this
case, the fieldsΓ,X1, . . . , X4 commute and so the elements of the dual basis,{ω1, . . . , ω5},
are all locally exact. The expression forZ is obtained by locally inverting the expressions
f 4 = constant,f 5 = constant foru1 andu2 (ω4 = df4, ω5 = df5).) By either technique
we find

Z12 + Z22 = C2

and

Z1 = Bx2 +D

with C ∈ R+, D ∈ R. We see thatZ2 = 0 on the straight linesx2 = (−D ± C)\B for a
given choice of the two parametersC andD. On these lines the congruence collapses. The
congruences in this case are generated by translation of circles in thex1 direction.
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